This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199824 Primes in successive intervals (2^i +1 .. 2^(i+1) -1) i=1,2,3,... such that there are no prime symmetric XOR couples in either the original interval or any recursively halved interval that contains them. 3
 67, 167, 587, 719, 751, 769, 1129, 1163, 1531, 1913, 2099, 2153, 2543, 2819, 3049, 3079, 3709, 3967, 4691, 4861, 4909, 5147, 5347, 5749, 5813, 5939, 6121, 6151, 6397, 6473, 6563, 6709, 6883, 6899, 6911, 7247, 7393, 7451, 7703, 7829, 7919, 8093, 8171, 8447, 8707, 8807, 8963, 9157, 9161, 9209 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The MAGMA program provided produces output with each interval delimited by the power of 2 that starts it. All of these primes are a sparse subset of isolated primes (the only possible exception would be a twin prime that crosses the interval boundary, but none are known to occur). In each interval XOR couples are produced by XORing a number in the interval with 2^i -2 where i is the index used in the interval definition. In recursively halved intervals, i is decremented each time down to i=2. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 EXAMPLE In the interval (17 .. 31) i=4 the numbers are coupled symmetrically around the middle of the interval by XORing each with 2^i -2 where i=4 or 14. |-------XOR 14-------| |  |--------------|  | |  |  |--------|  |  | |  |  |  |--|  |  |  | 17 19 21 23 25 27 29 31 (17,31), (19,29) are prime XOR couples but the prime 23 has a composite couple (23,25). 23 is in the first half of the interval. XORing each number in the first half of the interval with 2^i -2 where i=3 or 6 |---XOR 6---| |   |---|   | 17  19  21  23 (17,23) is a prime XOR couple and all primes in the interval have been coupled, therefore there are no primes with only composite couples in the interval (17 .. 31). The first such prime occurs in the interval (65 ..127) and is 67 MAPLE q:= (l, p, r)-> r-l=2 or not isprime(l+r-p) and                 `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r)): a:= proc(n) local p, l;       p:= `if` (n=1, 3, a(n-1));       do p:= nextprime(p);          l:= 2^ilog2(p);          if q(l, p, l+l) then break fi       od; a(n):=p     end: seq (a(n), n=1..60); # Alois P. Heinz, Nov 13 2011 PROG (MAGMA) XOR := func; for i:= 4 to 16 do     "****", i;     for j:= 2^(i) +1 to 2^(i+1) -1 by 2 do         sympair:=0;         for k:= 2 to i do             xornum:=2^k -2;             xorcouple:=XOR(j, xornum);             if (IsPrime(j) and IsPrime(xorcouple)) then sympair:=1;                end if;         end for;         if ((sympair eq 0) and IsPrime(j)) then j;            end if;     end for; end for; CROSSREFS Cf. A000040. Sequence in context: A142323 A044399 A044780 * A142544 A142671 A144326 Adjacent sequences:  A199821 A199822 A199823 * A199825 A199826 A199827 KEYWORD nonn AUTHOR Brad Clardy, Nov 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 19 20:30 EDT 2013. Contains 225436 sequences.