login
A199811
Sorted orders of automorphism groups of distinct solutions in the mix of 2 or 3 regular convex 4-polytopes.
3
23040, 23040, 69120, 73728, 221184, 221184, 864000, 864000, 2764800, 2764800, 2764800, 2764800, 4423680, 8294400, 8294400, 13271040, 13271040, 42467328, 103680000, 165888000, 165888000, 165888000, 165888000, 497664000, 497664000, 530841600, 530841600, 1592524800, 1592524800, 1592524800, 1592524800, 6220800000, 19906560000, 19906560000, 59719680000
OFFSET
1,1
COMMENTS
Sorted 5th column of Table 2, p. 11, of Cunningham.
LINKS
Gabe Cunningham, Mixing Convex Polytopes, arXiv:1111.1312v1 [math.CO], Nov 5, 2011
EXAMPLE
a(1) = 23040 because the mix of the pentatope {3,3,3} and the 16-cell hyperoctahedron {3,3,4} has 40 vertices, 480 edges, 1920 faces, 960 polyhedral facets, and an automorphism group of order 23040, and is itself polytopal (not every mix of polytope and polytope is a polytope).
KEYWORD
nonn,fini,full
AUTHOR
Jonathan Vos Post, Nov 10 2011
STATUS
approved