OFFSET
1,2
COMMENTS
When are both n-1 and 17*n-1 perfect squares? This problem gives the equation 17*x^2+16=y^2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,66,0,0,-1).
FORMULA
a(n) = 66*a(n-3) - a(n-6), a(1)=0, a(2)=3, a(3)=5, a(4)=32, a(5)=203, a(6)=333.
G.f.: x^2*(3*x^4+5*x^3+32*x^2+5*x+3) / (x^6-66*x^3+1). - Colin Barker, Sep 01 2013
EXAMPLE
a(7)=66*32-0=2112.
MATHEMATICA
LinearRecurrence[{0, 0, 66, 0, 0, -1}, {0, 3, 5, 32, 203, 333}, 50]
PROG
(PARI) Vec(x^2*(3*x^4+5*x^3+32*x^2+5*x+3)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sture Sjöstedt, Nov 10 2011
EXTENSIONS
More terms from T. D. Noe, Nov 10 2011
STATUS
approved