login
A199737
Decimal expansion of least x satisfying x^2-4*x*cos(x)=sin(x).
3
3, 6, 4, 1, 7, 3, 6, 5, 1, 0, 4, 2, 3, 2, 0, 3, 0, 8, 9, 1, 5, 6, 8, 0, 1, 7, 1, 2, 1, 9, 1, 6, 8, 8, 9, 1, 9, 4, 7, 4, 4, 1, 5, 6, 3, 0, 6, 1, 3, 8, 5, 4, 5, 6, 9, 0, 8, 9, 9, 4, 2, 4, 5, 1, 9, 9, 5, 8, 6, 1, 0, 9, 4, 0, 3, 4, 5, 1, 0, 1, 0, 9, 8, 2, 7, 9, 2, 6, 9, 6, 7, 0, 5, 5, 8, 2, 4, 5, 1
OFFSET
1,1
COMMENTS
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -3.6417365104232030891568017121916889194744...
greatest: 1.39694868354568477235286357946526821398...
MATHEMATICA
a = 1; b = -4; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]
RealDigits[r] (* A199737 least root *)
r = x /. FindRoot[f[x] == g[x], {x, 1.39, 1.40}, WorkingPrecision -> 110]
RealDigits[r] (* A199738 greatest root *)
CROSSREFS
Cf. A199597.
Sequence in context: A334278 A169842 A185588 * A220397 A021737 A359572
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 09 2011
STATUS
approved