login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199735 Decimal expansion of least x satisfying x^2-4*x*cos(x)=2*sin(x). 3
3, 6, 9, 2, 2, 1, 4, 2, 4, 5, 4, 3, 5, 8, 4, 0, 4, 6, 1, 1, 2, 1, 0, 1, 6, 8, 2, 9, 3, 7, 2, 6, 8, 7, 5, 3, 8, 5, 0, 8, 6, 7, 2, 6, 7, 2, 8, 8, 7, 7, 5, 4, 8, 6, 6, 1, 1, 3, 9, 7, 7, 6, 9, 2, 3, 2, 9, 4, 3, 2, 8, 2, 7, 9, 0, 8, 1, 8, 4, 0, 2, 9, 2, 5, 4, 9, 9, 1, 9, 7, 2, 2, 4, 2, 6, 7, 1, 7, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A199597 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: -3.69221424543584046112101682937268753850...

greatest:  1.519514926470401221585705162098148990...

MATHEMATICA

a = 1; b = -4; c = 2;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]

RealDigits[r]   (* A199735 least root *)

r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]

RealDigits[r]   (* A199736 greatest root *)

CROSSREFS

Cf. A199597.

Sequence in context: A094560 A179615 A183033 * A198143 A131579 A059626

Adjacent sequences:  A199732 A199733 A199734 * A199736 A199737 A199738

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 9 17:48 EDT 2020. Contains 333361 sequences. (Running on oeis4.)