login
A199735
Decimal expansion of least x satisfying x^2-4*x*cos(x)=2*sin(x).
3
3, 6, 9, 2, 2, 1, 4, 2, 4, 5, 4, 3, 5, 8, 4, 0, 4, 6, 1, 1, 2, 1, 0, 1, 6, 8, 2, 9, 3, 7, 2, 6, 8, 7, 5, 3, 8, 5, 0, 8, 6, 7, 2, 6, 7, 2, 8, 8, 7, 7, 5, 4, 8, 6, 6, 1, 1, 3, 9, 7, 7, 6, 9, 2, 3, 2, 9, 4, 3, 2, 8, 2, 7, 9, 0, 8, 1, 8, 4, 0, 2, 9, 2, 5, 4, 9, 9, 1, 9, 7, 2, 2, 4, 2, 6, 7, 1, 7, 3
OFFSET
1,1
COMMENTS
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -3.69221424543584046112101682937268753850...
greatest: 1.519514926470401221585705162098148990...
MATHEMATICA
a = 1; b = -4; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -3.7, -3.6}, WorkingPrecision -> 110]
RealDigits[r] (* A199735 least root *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A199736 greatest root *)
CROSSREFS
Cf. A199597.
Sequence in context: A094560 A179615 A183033 * A198143 A131579 A059626
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 09 2011
STATUS
approved