login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199734 Decimal expansion of greatest x satisfying x^2-4*x*cos(x)=3*sin(x). 3
1, 6, 2, 5, 2, 7, 8, 3, 8, 3, 3, 7, 8, 4, 4, 8, 6, 4, 3, 9, 3, 3, 0, 0, 3, 2, 2, 6, 2, 4, 6, 8, 3, 6, 1, 0, 6, 0, 8, 6, 5, 5, 9, 6, 7, 1, 6, 5, 8, 5, 7, 2, 8, 1, 5, 4, 4, 7, 5, 9, 5, 5, 8, 3, 7, 9, 3, 6, 1, 2, 3, 7, 9, 4, 4, 8, 6, 8, 8, 1, 9, 7, 7, 8, 7, 3, 1, 5, 2, 5, 4, 9, 3, 4, 0, 9, 1, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199597 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: -3.746168565528221340687013560527596978856...

greatest:  1.625278383378448643933003226246836106...

MATHEMATICA

a = 1; b = -4; c = 3;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -4, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]

RealDigits[r]   (* A199733 least root *)

r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110]

RealDigits[r]   (* A199734 greatest root *)

CROSSREFS

Cf. A199597.

Sequence in context: A021020 A215578 A007320 * A007321 A062828 A124457

Adjacent sequences:  A199731 A199732 A199733 * A199735 A199736 A199737

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 12:19 EDT 2019. Contains 327307 sequences. (Running on oeis4.)