OFFSET
1,1
COMMENTS
Note that a(1) is the number of pandigital numbers, 10! - 9! = 9*9!. For n > 1, it is the number of numbers in A199630, A199631, A365144, A199632, and A199633.
The Mathematica code takes many hours to run. The program stops after doing power 186 because the largest pandigital number 9876543210 raised to any greater power does not produce enough digits.
LINKS
Patrick De Geest, The nine digits (page 4) with some ten digit (pandigital) exceptions
Author?, All terms
MATHEMATICA
t = {}; perm = Select[Permutations[Range[0, 9]], #[[1]] > 0 &]; len = Length[perm]; Print[{1, len}]; AppendTo[t, len]; pwr = 1; i = 1; While[pwr++; i < len, While[IntegerLength[FromDigits[perm[[i]]]^pwr] < 10*pwr, i++]; cnt = 0; Do[If[Union[DigitCount[FromDigits[perm[[j]]]^pwr]] == {pwr}, cnt++], {j, i, len}]; Print[{pwr, cnt}]; AppendTo[t, cnt]]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
T. D. Noe, Nov 09 2011
STATUS
approved