login
A199634
Number of pandigital numbers raised to the n-th power is a number in which each digit appears n times.
0
3265920, 534, 74, 13, 8, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
Note that a(1) is the number of pandigital numbers, 10! - 9! = 9*9!. For n > 1, it is the number of numbers in A199630, A199631, A365144, A199632, and A199633.
The Mathematica code takes many hours to run. The program stops after doing power 186 because the largest pandigital number 9876543210 raised to any greater power does not produce enough digits.
MATHEMATICA
t = {}; perm = Select[Permutations[Range[0, 9]], #[[1]] > 0 &]; len = Length[perm]; Print[{1, len}]; AppendTo[t, len]; pwr = 1; i = 1; While[pwr++; i < len, While[IntegerLength[FromDigits[perm[[i]]]^pwr] < 10*pwr, i++]; cnt = 0; Do[If[Union[DigitCount[FromDigits[perm[[j]]]^pwr]] == {pwr}, cnt++], {j, i, len}]; Print[{pwr, cnt}]; AppendTo[t, cnt]]
CROSSREFS
Cf. A050278 (pandigital numbers), A199630, A199631, A365144, A199632, A199633.
Sequence in context: A203731 A138360 A206083 * A203987 A357755 A217110
KEYWORD
nonn,base
AUTHOR
T. D. Noe, Nov 09 2011
STATUS
approved