The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199627 G.f.: (1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4)) for g=1. 1
 1, 2, 1, 1, 2, 2, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Expansion of a PoincarĂ© series [or Poincare series] for space of moduli M_2 of stable bundles. LINKS Georg Fischer, Table of n, a(n) for n = 0..999 Bott, Raoul, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982), no. 2, 331-358; reprinted in Vol. 48 (October, 2011). See Eq. (4.30). Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1). FORMULA a(n) = A047538(n-3) for n >= 6. - Georg Fischer, Oct 28 2018 From Colin Barker, Nov 05 2019: (Start) G.f.: (1 + x)^2*(1 - 2*x + 2*x^2 - x^3 - x^4 + 3*x^5 - 2*x^6 + x^7) / ((1 - x)^2*(1 + x^2)). a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>9. a(n) = (-16 + (-i)^(1+n) + i^(1+n) + 4*n) / 2 for n>5, where i=sqrt(-1). (End) MAPLE f:=g->(1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4)); s:=g->seriestolist(series(f(g), x, 60)); s(1); PROG (MAGMA) g:=1; m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4))));  // Bruno Berselli, Nov 08 2011 (PARI) Vec((1 + x)^2*(1 - 2*x + 2*x^2 - x^3 - x^4 + 3*x^5 - 2*x^6 + x^7) / ((1 - x)^2*(1 + x^2)) + O(x^70)) \\ Colin Barker, Nov 05 2019 CROSSREFS Cf. A047538. Sequence in context: A209270 A083698 A128976 * A153902 A318205 A046772 Adjacent sequences:  A199624 A199625 A199626 * A199628 A199629 A199630 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 15:44 EDT 2020. Contains 334704 sequences. (Running on oeis4.)