The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199613 Decimal expansion of least x satisfying x^2+4*x*cos(x)=sin(x) (negated). 3
 1, 0, 7, 7, 3, 0, 9, 9, 1, 7, 5, 2, 4, 0, 7, 2, 0, 3, 0, 3, 3, 9, 9, 7, 9, 6, 1, 5, 1, 2, 6, 8, 1, 3, 6, 6, 4, 7, 9, 1, 6, 5, 3, 9, 9, 5, 8, 3, 8, 5, 8, 7, 9, 3, 4, 0, 9, 3, 3, 1, 5, 0, 2, 2, 5, 4, 2, 0, 7, 7, 4, 2, 2, 3, 3, 2, 4, 7, 1, 0, 7, 3, 0, 2, 3, 3, 9, 5, 0, 3, 9, 8, 7, 4, 5, 2, 2, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A199597 for a guide to related sequences. The Mathematica program includes a graph. LINKS Iain Fox, Table of n, a(n) for n = 1..20000 EXAMPLE least: -1.077309917524072030339979615126813664791... greatest: 3.553241680682892523957265556234494902067... MATHEMATICA a = 1; b = 4; c = 1; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110] RealDigits[r]  (* A199613, least of 4 roots *) r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110] RealDigits[r]  (* A199614, greatest of 4 roots *) PROG (PARI) solve(x=-2, -1, x^2+4*x*cos(x)-sin(x)) \\ Iain Fox, Nov 22 2017 CROSSREFS Cf. A199597. Sequence in context: A318302 A266271 A021568 * A136141 A264806 A197843 Adjacent sequences:  A199610 A199611 A199612 * A199614 A199615 A199616 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 01:46 EST 2020. Contains 332319 sequences. (Running on oeis4.)