login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199612 Decimal expansion of greatest x satisfying x+4*cos(x)=0. 3
3, 5, 9, 5, 3, 0, 4, 8, 6, 7, 1, 6, 1, 5, 4, 7, 9, 9, 1, 8, 7, 7, 6, 0, 6, 9, 3, 5, 0, 8, 3, 4, 1, 8, 7, 1, 4, 9, 1, 3, 1, 1, 1, 4, 3, 7, 7, 7, 5, 5, 2, 9, 3, 2, 5, 1, 8, 5, 5, 2, 2, 4, 8, 6, 9, 1, 2, 8, 2, 5, 3, 0, 1, 8, 4, 3, 4, 6, 3, 7, 8, 9, 3, 9, 0, 1, 3, 7, 9, 2, 1, 4, 0, 7, 2, 6, 9, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A199597 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: -1.25235323400258876318632812197538043590128...

greatest:  3.595304867161547991877606935083418714913111...

MATHEMATICA

a = 1; b = 4; c = 0;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]

RealDigits[r]  (* A199611, least of 4 roots *)

r = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]

RealDigits[r]  (* A199612, greatest of 4 roots *)

CROSSREFS

Cf. A199597.

Sequence in context: A236556 A189044 A299793 * A076844 A198558 A286566

Adjacent sequences:  A199609 A199610 A199611 * A199613 A199614 A199615

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 03:51 EDT 2019. Contains 326260 sequences. (Running on oeis4.)