login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199610 Decimal expansion of greatest x satisfying x^2+3*x*cos(x)=3*sin(x). 3
3, 0, 6, 5, 6, 2, 0, 7, 6, 0, 3, 3, 6, 8, 5, 8, 5, 6, 1, 8, 6, 7, 4, 5, 7, 5, 5, 2, 8, 5, 0, 8, 2, 1, 3, 2, 5, 0, 6, 5, 4, 0, 2, 0, 6, 8, 2, 0, 1, 7, 0, 6, 2, 6, 3, 9, 9, 4, 5, 6, 9, 0, 5, 4, 3, 3, 1, 2, 5, 4, 8, 2, 7, 3, 8, 3, 4, 7, 4, 3, 0, 4, 4, 5, 7, 0, 8, 1, 7, 8, 0, 0, 8, 7, 6, 1, 4, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A199597 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: 1.14225640224474011004461587823586435251534483...

greatest:  3.0656207603368585618674575528508213250654...

MATHEMATICA

a = 1; b = 3; c = 3;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 4}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]

RealDigits[r]  (* A199609, least of 3 roots *)

r = x /. FindRoot[f[x] == g[x], {x, 3, 3.1}, WorkingPrecision -> 110]

RealDigits[r]  (* A199610, greatest of 3 roots *)

CROSSREFS

Cf. A199597.

Sequence in context: A062542 A109693 A188858 * A004606 A019808 A182145

Adjacent sequences:  A199607 A199608 A199609 * A199611 A199612 A199613

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 30 15:24 EDT 2014. Contains 245069 sequences.