login
A199607
Decimal expansion of least x satisfying x^2+3*x*cos(x)=2*sin(x).
3
5, 9, 7, 3, 3, 9, 2, 5, 0, 3, 6, 4, 8, 5, 3, 9, 7, 5, 0, 0, 4, 9, 7, 3, 6, 1, 3, 5, 9, 9, 7, 6, 6, 9, 0, 2, 8, 3, 3, 1, 8, 5, 7, 5, 6, 4, 1, 8, 4, 9, 2, 4, 1, 1, 3, 2, 7, 4, 2, 3, 8, 5, 1, 2, 2, 2, 8, 8, 6, 9, 5, 9, 3, 7, 4, 7, 8, 7, 0, 0, 7, 9, 2, 5, 4, 4, 7, 4, 1, 3, 0, 9, 1, 3, 3, 4, 4, 3, 4
OFFSET
0,1
COMMENTS
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -0.5973392503648539750049736135997669028331...
greatest: 3.0481385953651166891446050593739052208...
MATHEMATICA
a = 1; b = 3; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 4}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.6, -.5}, WorkingPrecision -> 110]
RealDigits[r] (* A199607, least of 4 roots *)
r = x /. FindRoot[f[x] == g[x], {x, 3, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199708, greatest of 4 roots *)
CROSSREFS
Cf. A199597.
Sequence in context: A254154 A121060 A230437 * A233382 A021630 A079459
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 08 2011
STATUS
approved