login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199591 Generalized Fermat numbers: 5^(2^n) + 1, n >= 0. 12
6, 26, 626, 390626, 152587890626, 23283064365386962890626, 542101086242752217003726400434970855712890626 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Arkadiusz Wesolowski, Table of n, a(n) for n = 0..11

Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.

C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=5)

Wilfrid Keller, GFN05 factoring status

Eric Weisstein's World of Mathematics, Generalized Fermat Number

OEIS Wiki, Generalized Fermat numbers

FORMULA

a(0) = 6; a(n) = (a(n-1)-1)^2 + 1, n >= 1.

a(0) = 6, a(1) = 26; a(n) = a(n-1) + 4*5^(2^(n-1))*product_{i=0..n-2} a(i), n >= 2.

a(0) = 6, a(1) = 26; a(n) = a(n-1)^2 - 2*(a(n-2)-1)^2, n >= 2.

a(0) = 6; a(n) = 4*(product_{i=0..n-1} a(i)) + 2, n >= 1.

a(n) = A152578(n) - 1.

EXAMPLE

a(0) = 5^(2^0) + 1 = 5^1 + 1 = 6 = 4*(2^0) + 2;

a(1) = 5^(2^1) + 1 = 5^2 + 1 = 26 = 4*(2^1*3) + 2;

a(2) = 5^(2^2) + 1 = 5^4 + 1 = 626 = 4*(2^2*3*13) + 2;

a(3) = 5^(2^3) + 1 = 5^8 + 1 = 390626 = 4*(2^3*3*13*313) + 2;

a(4) = 5^(2^4) + 1 = 5^16 + 1 = 152587890626 = 4*(2^4*3*13*313*195313) + 2;

a(5) = 5^(2^5) + 1 = 5^32 + 1 = 23283064365386962890626 = 4*(2^5*3*13*313*195313*76293945313) + 2;

MATHEMATICA

Table[5^2^n + 1, {n, 0, 6}]

PROG

(MAGMA) [5^2^n+1 : n in [0..6]]

(PARI) for(n=0, 6, print1(5^2^n+1, ", "))

CROSSREFS

Cf. A059919, A078303, A078304, A152581, A080176, A199592, A152585.

Sequence in context: A009639 A323868 A226980 * A230867 A137088 A179162

Adjacent sequences:  A199588 A199589 A199590 * A199592 A199593 A199594

KEYWORD

easy,nonn

AUTHOR

Arkadiusz Wesolowski, Nov 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 15:08 EDT 2019. Contains 327198 sequences. (Running on oeis4.)