login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199542 Triangle T(n,m) = coefficient of x^n in expansion of (x^2*cotan(x))^m = sum(n>=m, T(n,m) x^n * m!^2/n!^2). 0
1, 0, 1, -12, 0, 1, 0, -96, 0, 1, -320, 0, -400, 0, 1, 0, 8640, 0, -1200, 0, 1, -53760, 0, 188160, 0, -2940, 0, 1, 0, 4300800, 0, 1630720, 0, -6272, 0, 1, -27869184, 0, 3870720, 0, 9144576, 0, -12096, 0, 1, 0, 4877107200, 0, -1548288000, 0, 38949120, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Triangle T(n,m)*m!^2/n!^2=

1. Riordan Array (1,x^2*cotan(x)) without first column.

2. Riordan Array (x*cotan(x),x^2*cotan(x)) numbering triangle (0,0).

LINKS

Table of n, a(n) for n=1..52.

D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.

V. V. Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.

Dmitry V. Kruchinin and Vladimir V. Kruchinin, A Generating Function for the Diagonal T_{2n,n} in Triangles, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.6.

T. Mansour, M. Shattuck and D. G. L. Wang, Counting subwords in flattened permutations, arXiv preprint arXiv:1307.3637 [math.CO], 2013.

FORMULA

T(n,m) = n!^2/m!^2*2^(n-2*m)*(-1)^((n-m)/2)*sum(l=0..m, (2^l*l!*binomial(m,l)* sum(k..0,n-2*m+l,(k!*stirling1(l+k,l)*stirling2(n-2*m+l,k))/((l+k)!*(n-2*m+l)!)))).

EXAMPLE

T(n,m)*m!^2/n!^2=

1

0, 1

-1/3, 0, 1

0, -2/3, 0, 1

-1/45, 0, -1, 0, 1

0, 1/15, 0, -4/3, 0, 1

-2/945, 0, 4/15, 0, -5/3, 0, 1

MATHEMATICA

Table[n!^2/(m!)^2*2^(n - 2 m) (-1)^((n - m)/2) Sum[(2^l (l!) Binomial[m, l] Sum[(k! StirlingS1[l + k, l] StirlingS2[n - 2 m + l, k])/((l + k)! (n - 2 m + l)!), {k, 0, n - 2 m + l}]), {l, 0, m}], {n, 10}, {m, n}] // Flatten (* Michael De Vlieger, Apr 26 2016 *)

PROG

(Maxima)

T(n, m):=n!^2/m!^2*2^(n-2*m)*(-1)^((n-m)/2)*sum((2^l*l!*binomial(m, l)* sum((k!*stirling1(l+k, l)*stirling2(n-2*m+l, k))/((l+k)!*(n-2*m+l)!), k, 0, n-2*m+l)), l, 0, m);

(PARI) T(n, m) = n!^2/m!^2*2^(n - 2*m)*(-1)^((n - m)/2)*sum(l=0, m, (2^l*l!*binomial(m, l)*sum(k=0, n - 2*m + l, (k!*stirling(l + k, l, 1)*stirling(n - 2*m + l, k, 2))/((l + k)!*(n - 2*m + l)!))));

{for(n=1, 10, for(m=1, n, print1(T(n, m), ", "); ); print(); ); } \\ Indranil Ghosh, Mar 10 2017

CROSSREFS

Sequence in context: A230526 A156401 A246223 * A304330 A322731 A048730

Adjacent sequences: A199539 A199540 A199541 * A199543 A199544 A199545

KEYWORD

sign,tabl

AUTHOR

Vladimir Kruchinin, Nov 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 06:16 EST 2022. Contains 358649 sequences. (Running on oeis4.)