login
Leftmost column in the monotonic justified array of all positive generalized Fibonacci sequences (A160271).
5

%I #29 Jan 09 2022 14:07:23

%S 1,2,3,2,4,3,5,4,3,6,5,4,7,6,5,4,8,7,6,5,9,8,7,6,5,10,9,8,7,6,11,10,9,

%T 8,7,6,12,11,10,9,8,7,13,12,11,10,9,8,7,14,13,12,11,10,9,8,15,14,13,

%U 12,11,10,9,8,16,15,14,13,12,11,10,9,17,16,15,14

%N Leftmost column in the monotonic justified array of all positive generalized Fibonacci sequences (A160271).

%C Northwest corner of A160271:

%C 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

%C 2, 0, 2, 2, 4, 6, 10, 16, 26, 42, ...

%C 3, 0, 3, 3, 6, 9, 15, 24, 39, 63, ...

%C 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ...

%C 4, 0, 4, 4, 8, 12, 20, 32, 52, 84, ...

%C 3, 1, 4, 5, 9, 14, 23, 37, 60, 97, ...

%C 5, 0, 5, 5, 10, 15, 25, 40, 65, 105, ...

%C 4, 1, 5, 6, 11, 17, 28, 45, 73, 118, ...

%C 3, 2, 5, 7, 12, 19, 31, 50, 81, 131, ...

%C ...

%H Clark Kimberling, <a href="https://doi.org/10.1007/978-94-011-2058-6_39">Orderings of the set of all positive Fibonacci sequences</a>, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers, Vol. 5 (1993), pp. 405-416.

%F a(n) = (s(n)^2 - n) * [s(n)^2 - s(n) >= n] + (s(n)^2 - n + s(n)) * [s(n)^2 - s(n) < n] where s(n) = ceiling(sqrt(n)). - _Iliya Trub_, Mar 17 2019

%F a(n) = A339399(2n). - _Wesley Ivan Hurt_, Jan 09 2022

%F a(n) = floor(ceiling(sqrt(4n))^2/4)+floor(sqrt(4n-2))-floor(sqrt(n)+1/2)-n+1. - _Wesley Ivan Hurt_, Jan 09 2022

%Y Cf. A160271, A199087, A199088, A339399.

%K nonn

%O 1,2

%A _Casey Mongoven_, Nov 06 2011