login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199427 Numbers n such that 4n+1 and 8n+3 are prime. 1
1, 7, 10, 13, 22, 28, 43, 58, 70, 73, 127, 148, 160, 163, 190, 202, 238, 253, 262, 307, 322, 352, 370, 400, 433, 472, 475, 493, 517, 532, 535, 568, 598, 637, 673, 685, 688, 742, 832, 847, 853, 862, 898, 940, 955, 1018, 1087, 1093, 1102, 1120, 1183, 1198, 1270 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
According to Beiler: the integer 2 is a primitive root of all primes of the form 8n+3 provided 4n+1 is a prime.
REFERENCES
Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 4.
LINKS
FORMULA
a(n) = intersection(A005098, A005124).
EXAMPLE
For n = 1, both 11 and 5 are primes, hence 2 is a primitive root of 11.
MATHEMATICA
Select[Range[1270], PrimeQ[4*# + 1] && PrimeQ[8*# + 3] &] (* T. D. Noe, Nov 07 2011 *)
CROSSREFS
Sequence in context: A212979 A114961 A219045 * A178508 A123834 A064629
KEYWORD
nonn
AUTHOR
Martin Renner, Nov 06 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:17 EDT 2024. Contains 371962 sequences. (Running on oeis4.)