

A199427


Numbers n such that 4n+1 and 8n+3 are prime.


1



1, 7, 10, 13, 22, 28, 43, 58, 70, 73, 127, 148, 160, 163, 190, 202, 238, 253, 262, 307, 322, 352, 370, 400, 433, 472, 475, 493, 517, 532, 535, 568, 598, 637, 673, 685, 688, 742, 832, 847, 853, 862, 898, 940, 955, 1018, 1087, 1093, 1102, 1120, 1183, 1198, 1270
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

According to Beiler: the integer 2 is a primitive root of all primes of the form 8n+3 provided 4n+1 is a prime.


REFERENCES

Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 4.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = intersection(A005098, A005124).


EXAMPLE

For n = 1, both 11 and 5 are primes, hence 2 is a primitive root of 11.


MATHEMATICA

Select[Range[1270], PrimeQ[4*# + 1] && PrimeQ[8*# + 3] &] (* T. D. Noe, Nov 07 2011 *)


CROSSREFS

Cf. A001122, A005098, A005124.
Sequence in context: A212979 A114961 A219045 * A178508 A123834 A064629
Adjacent sequences: A199424 A199425 A199426 * A199428 A199429 A199430


KEYWORD

nonn


AUTHOR

Martin Renner, Nov 06 2011


STATUS

approved



