This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199332 Triangle read by rows, where even numbered rows contain the nonsquares (cf. A000037) and odd rows contain replicated squares. 8
 1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 38 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS An approximation of the Euler-Mascheroni constant by rational numbers: sum ((-1)^(n+1) * sum (1/T(n,k): k=1..n)) converges to gamma, cf. Polya-Szego reference. REFERENCES G. Polya and G. Szego, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 1, §2, Problem 19.2., page 51. LINKS Reinhard Zumkeller, Rows n=1..150 of triangle, flattened Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant Wikipedia, Euler-Mascheroni constant EXAMPLE 1:                    1                           1 2:                  2   3                      2 .. 3 3:                4   4   4                       4 4:              5   6   7   8                  5 .. 8 5:            9   9   9   9   9                   9 6:         10  11  12  13  14  15             10 .. 15 7:       16  16  16  16  16  16  16              16 8:     17  18  19  20  21  22  23  24         17 .. 24 9:   25  25  25  25  25  25  25  25  25          25 . MATHEMATICA t[n_, k_] := If[OddQ[n], (n+1)^2/4, n^2/4 + k]; Flatten[ Table[ t[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Dec 05 2011 *) Flatten[Table[If[IntegerQ[Sqrt[n]], Table[n, {2*Sqrt[n]-1}], n], {n, 40}]] (* Harvey P. Dale, Nov 11 2013 *) PROG (Haskell) a199332 n k = a199332_tabl !! (n-1) !! (k-1) a199332_row n = a199332_tabl !! (n-1) a199332_list = concat a199332_tabl a199332_tabl = f [1..] [1..] where    f (x:xs) ys'@(y:ys) | odd x  = (replicate x y) : f xs ys                        | even x = us : f xs vs                        where (us, vs) = splitAt x ys' CROSSREFS Cf. A000290 & A002620 (central terms),  A199771 (row sums). Sequence in context: A135414 A099479 A120508 * A029085 A087875 A195848 Adjacent sequences:  A199329 A199330 A199331 * A199333 A199334 A199335 KEYWORD nonn,tabl AUTHOR Reinhard Zumkeller, Nov 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.