login
A199294
Decimal expansion of x>0 satisfying 3*x^2+3*x*cos(x)=2.
3
4, 8, 6, 4, 5, 7, 5, 0, 4, 6, 1, 6, 8, 6, 6, 3, 7, 4, 5, 7, 5, 4, 4, 1, 2, 8, 4, 4, 9, 3, 7, 5, 2, 8, 5, 2, 6, 3, 6, 2, 0, 3, 2, 2, 6, 0, 8, 4, 6, 7, 9, 6, 1, 3, 5, 3, 1, 3, 7, 5, 2, 5, 6, 4, 5, 2, 2, 8, 3, 1, 9, 3, 2, 1, 1, 4, 5, 1, 8, 1, 0, 3, 3, 7, 9, 3, 7, 0, 6, 9, 2, 4, 2, 7, 5, 5, 2, 8, 3
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.0835116610219289883304749103821255...
positive: 0.48645750461686637457544128449375285...
MATHEMATICA
a = 3; b = 3; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r] (* A199293 *)
r = x /. FindRoot[f[x] == g[x], {x, .48, .49}, WorkingPrecision -> 110]
RealDigits[r] (* A199294 *)
CROSSREFS
Cf. A199170.
Sequence in context: A338942 A219246 A296488 * A155741 A243376 A200411
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 05 2011
STATUS
approved