login
A199293
Decimal expansion of x < 0 satisfying 3*x^2 + 3*x*cos(x) = 2.
3
1, 0, 8, 3, 5, 1, 1, 6, 6, 1, 0, 2, 1, 9, 2, 8, 9, 8, 8, 3, 3, 0, 4, 7, 4, 9, 1, 0, 3, 8, 2, 1, 2, 5, 5, 8, 3, 1, 2, 5, 4, 1, 8, 9, 2, 0, 1, 6, 8, 0, 8, 4, 8, 2, 7, 8, 3, 4, 5, 3, 7, 5, 8, 7, 4, 4, 4, 2, 9, 2, 4, 6, 1, 7, 9, 3, 3, 4, 3, 9, 2, 9, 5, 4, 0, 9, 0, 6, 8, 8, 0, 8, 7, 7, 9, 4, 1, 7, 3, 6, 6
OFFSET
1,3
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.0835116610219289883304749103821255...
positive: 0.48645750461686637457544128449375285...
MATHEMATICA
a = 3; b = 3; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r] (* A199293 *)
r = x /. FindRoot[f[x] == g[x], {x, .48, .49}, WorkingPrecision -> 110]
RealDigits[r] (* A199294 *)
CROSSREFS
Sequence in context: A202779 A328498 A199440 * A357108 A110234 A334073
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 05 2011
EXTENSIONS
a(90) onwards corrected by Georg Fischer, Aug 03 2021
STATUS
approved