This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199292 Decimal expansion of x>0 satisfying 3*x^2+3*x*cos(x)=1. 3
 2, 7, 0, 1, 5, 0, 2, 8, 9, 6, 3, 1, 8, 0, 3, 2, 5, 8, 0, 2, 0, 9, 7, 7, 8, 4, 6, 1, 2, 6, 9, 8, 6, 0, 4, 4, 6, 0, 7, 8, 8, 6, 9, 5, 1, 4, 6, 6, 2, 3, 2, 3, 5, 2, 8, 3, 8, 1, 5, 8, 4, 6, 7, 7, 6, 1, 8, 7, 5, 8, 8, 2, 1, 3, 0, 7, 1, 2, 3, 6, 4, 2, 1, 7, 1, 3, 3, 4, 7, 2, 5, 8, 6, 4, 3, 8, 3, 1, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199170 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE negative: -0.942013171745925470278385478816333... positive:  0.2701502896318032580209778461269860... MATHEMATICA a = 3; b = 3; c = 1; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110] RealDigits[r]     (* A199291 *) r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110] RealDigits[r]    (* A199292 *) CROSSREFS Cf. A199170. Sequence in context: A100378 A020819 A111953 * A152779 A021041 A188737 Adjacent sequences:  A199289 A199290 A199291 * A199293 A199294 A199295 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .