login
A199287
Decimal expansion of x<0 satisfying 3*x^2+2*x*cos(x)=2.
3
1, 0, 1, 2, 0, 9, 2, 7, 3, 8, 8, 7, 2, 2, 8, 9, 4, 3, 4, 0, 7, 4, 6, 5, 4, 2, 6, 8, 7, 2, 4, 3, 6, 8, 8, 1, 7, 3, 5, 1, 2, 9, 8, 6, 4, 9, 6, 2, 2, 0, 0, 1, 0, 3, 0, 3, 5, 6, 2, 5, 9, 1, 0, 5, 4, 6, 4, 8, 4, 0, 6, 6, 2, 0, 0, 5, 4, 2, 3, 2, 6, 8, 8, 3, 6, 1, 6, 4, 6, 3, 4, 4, 6, 7, 8, 3, 0, 8, 2
OFFSET
1,4
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.01209273887228943407465426872436881...
positive: 0.584532490790406304533696640011179337...
MATHEMATICA
a = 3; b = 2; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1}, WorkingPrecision -> 110]
RealDigits[r] (* A199287 *)
r = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110]
RealDigits[r] (* A199288 *)
CROSSREFS
Cf. A199170.
Sequence in context: A021831 A248897 A021482 * A198735 A071120 A249417
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 05 2011
STATUS
approved