login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199286 Decimal expansion of x>0 satisfying 3*x^2+2*x*cos(x)=1. 3
3, 4, 3, 2, 7, 2, 8, 1, 9, 6, 2, 7, 0, 0, 0, 4, 2, 6, 4, 7, 8, 6, 9, 7, 0, 2, 7, 5, 0, 9, 7, 0, 2, 6, 9, 5, 3, 1, 9, 3, 1, 1, 0, 4, 5, 2, 6, 1, 0, 3, 2, 9, 0, 4, 8, 1, 3, 0, 3, 7, 5, 1, 5, 8, 9, 1, 1, 2, 9, 5, 4, 7, 8, 8, 9, 4, 9, 5, 1, 5, 5, 3, 0, 5, 6, 4, 0, 7, 8, 5, 8, 3, 0, 2, 6, 1, 1, 3, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199170 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

negative: -0.840914700055474492704399020053615852...

positive:  0.3432728196270004264786970275097026953...

MATHEMATICA

a = 3; b = 2; c = 1;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.85, -.84}, WorkingPrecision -> 110]

RealDigits[r]    (* A199285 *)

r = x /. FindRoot[f[x] == g[x], {x, .34, .35}, WorkingPrecision -> 110]

RealDigits[r]    (* A199286 *)

CROSSREFS

Cf. A199170.

Sequence in context: A275638 A281975 A133617 * A188722 A257526 A038774

Adjacent sequences:  A199283 A199284 A199285 * A199287 A199288 A199289

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 20:03 EDT 2019. Contains 324380 sequences. (Running on oeis4.)