login
A199283
Decimal expansion of x<0 satisfying 3*x^2+x*cos(x)=3.
3
1, 0, 8, 1, 4, 1, 1, 5, 9, 7, 1, 9, 4, 6, 7, 7, 5, 4, 8, 2, 8, 5, 1, 5, 3, 7, 5, 1, 5, 9, 2, 1, 6, 4, 2, 7, 8, 8, 2, 0, 0, 2, 3, 6, 3, 6, 9, 7, 1, 5, 3, 4, 4, 8, 5, 9, 6, 8, 1, 5, 6, 9, 3, 7, 6, 7, 4, 4, 3, 9, 4, 4, 9, 9, 4, 3, 7, 2, 3, 9, 6, 5, 5, 2, 2, 4, 7, 1, 4, 5, 7, 7, 2, 9, 1, 9, 6, 1, 7
OFFSET
1,3
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.081411597194677548285153751592164...
positive: 0.901983106002417964495821536577097...
MATHEMATICA
a = 3; b = 1; c = 3;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
RealDigits[r] (* A199283 *)
r = x /. FindRoot[f[x] == g[x], {x, .9, 1}, WorkingPrecision -> 110]
RealDigits[r] (* A199284 *)
CROSSREFS
Cf. A199170.
Sequence in context: A358286 A176457 A110194 * A079359 A010156 A197590
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 05 2011
STATUS
approved