login
A199281
Decimal expansion of x<0 satisfying 3*x^2+x*cos(x)=2.
3
9, 2, 3, 2, 0, 7, 9, 6, 7, 0, 2, 2, 2, 7, 2, 9, 1, 8, 0, 8, 5, 3, 7, 0, 5, 6, 2, 9, 4, 6, 3, 7, 2, 1, 7, 0, 1, 6, 4, 4, 8, 2, 0, 9, 3, 2, 9, 4, 4, 3, 1, 7, 0, 9, 0, 4, 3, 6, 2, 4, 2, 7, 9, 0, 1, 9, 7, 8, 8, 8, 9, 4, 8, 0, 1, 9, 7, 0, 6, 4, 8, 4, 7, 0, 2, 7, 4, 3, 6, 3, 2, 1, 4, 8, 8, 1, 7, 8, 8
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.923207967022272918085370562946372...
positive: 0.6988053514945826378907251192096740...
MATHEMATICA
a = 3; b = 1; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r] (* A199281 *)
r = x /. FindRoot[f[x] == g[x], {x, .69, .70}, WorkingPrecision -> 110]
RealDigits[r] (* A199282 *)
CROSSREFS
Cf. A199170.
Sequence in context: A132719 A293577 A182497 * A291363 A010161 A222226
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 05 2011
STATUS
approved