login
A199280
Decimal expansion of x>0 satisfying 3*x^2+x*cos(x)=1.
3
4, 4, 6, 2, 5, 9, 8, 1, 1, 7, 7, 1, 7, 6, 5, 9, 5, 6, 2, 9, 6, 1, 7, 0, 1, 2, 1, 1, 9, 9, 0, 9, 2, 3, 2, 6, 4, 4, 6, 9, 3, 5, 0, 9, 1, 3, 3, 4, 1, 2, 7, 9, 6, 9, 8, 5, 4, 2, 0, 8, 6, 8, 5, 2, 6, 6, 8, 9, 8, 0, 6, 4, 5, 2, 4, 2, 4, 1, 6, 3, 6, 5, 8, 4, 1, 9, 3, 0, 5, 1, 1, 2, 4, 0, 2, 6, 1, 6, 4
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.7165503839061782023923880301835513...
positive: 0.4462598117717659562961701211990923...
MATHEMATICA
Remove["Global`*"];
a = 3; b = 1; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
RealDigits[r] (* A199279 *)
r = x /. FindRoot[f[x] == g[x], {x, .44, .45}, WorkingPrecision -> 110]
RealDigits[r] (* A199280 *)
CROSSREFS
Cf. A199170.
Sequence in context: A200348 A205868 A156583 * A086171 A369652 A090113
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved