login
A199273
Decimal expansion of x<0 satisfying 2*x^2+3*x*cos(x)=1.
3
1, 1, 1, 2, 7, 0, 7, 1, 6, 1, 2, 2, 3, 2, 1, 9, 3, 9, 2, 1, 0, 5, 2, 6, 0, 4, 3, 8, 8, 8, 3, 5, 1, 3, 3, 0, 9, 1, 0, 3, 3, 7, 9, 6, 2, 3, 1, 2, 5, 2, 5, 1, 2, 7, 4, 0, 7, 4, 6, 5, 6, 5, 6, 5, 3, 3, 4, 2, 3, 4, 6, 5, 8, 4, 2, 7, 1, 2, 8, 1, 2, 2, 5, 3, 6, 9, 0, 4, 5, 1, 5, 0, 4, 0, 8, 9, 7, 2, 1
OFFSET
1,4
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.11270716122321939210526043888351330910...
positive: 0.289505448385867415592179483198982452381...
MATHEMATICA
a = 2; b = 3; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199273 *)
r = x /. FindRoot[f[x] == g[x], {x, .28, .29}, WorkingPrecision -> 110]
RealDigits[r] (* A199274 *)
CROSSREFS
Cf. A199170.
Sequence in context: A021791 A325905 A372386 * A196833 A245224 A016638
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved