login
A199266
Decimal expansion of x>0 satisfying 2*x^2+x*cos(x)=2.
3
8, 4, 8, 2, 4, 9, 6, 4, 9, 0, 6, 6, 0, 3, 3, 5, 6, 4, 4, 9, 3, 0, 0, 1, 6, 7, 1, 3, 6, 5, 3, 6, 0, 1, 0, 5, 1, 5, 8, 7, 0, 8, 7, 3, 5, 3, 8, 3, 3, 5, 2, 5, 3, 4, 6, 7, 8, 2, 7, 4, 0, 3, 0, 2, 5, 6, 9, 7, 0, 7, 8, 0, 7, 5, 7, 1, 7, 7, 8, 1, 7, 4, 4, 8, 9, 5, 2, 7, 7, 9, 5, 8, 5, 6, 5, 4, 8, 8, 6
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.11586547417780092002590535253585579273...
positive: 0.84824964906603356449300167136536010515870...
MATHEMATICA
a = 2; b = 1; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199265 *)
r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
RealDigits[r] (* A199266 *)
CROSSREFS
Cf. A199170.
Sequence in context: A197260 A155889 A275712 * A347145 A205383 A083948
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved