login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199182 Decimal expansion of least x satisfying x^2+3*x*cos(x)=1. 4
1, 3, 6, 0, 6, 7, 2, 7, 7, 2, 5, 1, 3, 7, 9, 7, 2, 1, 5, 2, 2, 8, 6, 0, 2, 7, 4, 8, 7, 3, 7, 9, 9, 2, 5, 8, 8, 0, 9, 6, 8, 6, 2, 8, 0, 8, 5, 7, 6, 1, 8, 0, 9, 4, 7, 4, 5, 8, 1, 9, 1, 7, 7, 1, 9, 7, 1, 2, 0, 7, 6, 2, 0, 8, 6, 5, 3, 3, 7, 9, 2, 3, 5, 3, 1, 4, 1, 9, 0, 8, 0, 8, 3, 3, 8, 2, 9, 4, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199170 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: -1.3606727725137972152286027487379925...

greatest: 3.27746466341373058734587727791083...

MATHEMATICA

a = 1; b = 3; c = 1;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]

RealDigits[r]   (* A199182  least of four roots *)

r = x /. FindRoot[f[x] == g[x], {x, 3.27, 3.28}, WorkingPrecision -> 110]

RealDigits[r]  (* A199183   greatest of four roots *)

CROSSREFS

Cf. A199170.

Sequence in context: A010470 A181916 A077590 * A011368 A020811 A200005

Adjacent sequences:  A199179 A199180 A199181 * A199183 A199184 A199185

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 14:52 EST 2018. Contains 317352 sequences. (Running on oeis4.)