login
A199124
Least prime having 1 more digit and higher sum of digits than the preceding term.
2
2, 13, 107, 1009, 10037, 100049, 1000099, 10000379, 100000399, 1000000787, 10000000799, 100000001989, 1000000001999, 10000000003999, 100000000006997, 1000000000017899, 10000000000018999, 100000000000038989, 1000000000000067999, 10000000000000079899, 100000000000000079999
OFFSET
1,1
COMMENTS
For more terms use the formula a(n)=10^(n-1)+A199190(n) and the values listed in A199190.
FORMULA
A199124(n) = 10^(n-1)+A199190(n); see there for an estimate of growth.
PROG
(PARI) {print1(p=2); for(d=1, 20, o=A007953(p); p=10^d; until(A007953(p=nextprime(p+1))>o, ); print1(", "p))}
CROSSREFS
Cf. A065122.
Sequence in context: A371586 A371574 A127746 * A069100 A031991 A371581
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 03 2011
STATUS
approved