login
A199082
Decimal expansion of x < 0 satisfying x^2 + 2*sin(x) = 2.
3
1, 9, 6, 1, 8, 8, 4, 2, 4, 6, 4, 1, 0, 8, 3, 4, 8, 9, 3, 4, 1, 9, 2, 8, 0, 7, 7, 9, 7, 7, 4, 8, 9, 4, 2, 6, 8, 2, 5, 7, 4, 7, 1, 2, 0, 7, 1, 2, 7, 2, 1, 8, 6, 6, 5, 5, 2, 0, 8, 9, 8, 6, 8, 6, 9, 2, 3, 2, 5, 8, 8, 5, 0, 6, 8, 5, 9, 0, 3, 7, 8, 4, 0, 1, 3, 8, 9, 0, 9, 6, 5, 8, 4, 8, 8, 1, 9, 0, 4
OFFSET
1,2
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
negative: -1.96188424641083489341928077977489...
positive: 0.77498081442304344595859350247040...
MATHEMATICA
a = 1; b = 2; c = 2;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.97, -1.96}, WorkingPrecision -> 110]
RealDigits[r](* A199082 *)
r = x /. FindRoot[f[x] == g[x], {x, .77, .78}, WorkingPrecision -> 110]
RealDigits[r](* A199083 *)
PROG
(PARI) a=1; b=2; c=2; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
(Sage) a=1; b=2; c=2; (a*x^2 + b*sin(x)==c).find_root(-2, 0, x) # G. C. Greubel, Feb 20 2019
CROSSREFS
Sequence in context: A021108 A021840 A198582 * A358644 A220669 A064230
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
STATUS
approved