login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199081 Decimal expansion of x > 0 satisfying x^2 + 2*sin(x) = 1. 3
4, 2, 3, 0, 2, 8, 1, 8, 1, 8, 8, 5, 1, 6, 0, 4, 2, 8, 8, 5, 1, 2, 9, 3, 3, 2, 4, 7, 3, 2, 6, 0, 7, 1, 8, 9, 5, 7, 2, 6, 9, 9, 8, 1, 0, 8, 4, 9, 1, 9, 9, 6, 0, 1, 7, 7, 7, 0, 2, 2, 5, 5, 3, 1, 6, 0, 9, 3, 4, 1, 1, 9, 8, 1, 1, 0, 6, 1, 3, 3, 0, 2, 6, 6, 3, 3, 0, 5, 4, 9, 3, 8, 0, 7, 7, 9, 9, 7, 2, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A198866 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

negative: -1.7251712054289301271344240020632...

positive:  0.42302818188516042885129332473260...

MATHEMATICA

a = 1; b = 2; c = 1;

f[x_] := a*x^2 + b*Sin[x]; g[x_] := c

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]

RealDigits[r]   (* A199080 *)

r = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110]

RealDigits[r]   (* A199081 *)

PROG

(PARI) a=1; b=2; c=1; solve(x=0, 1, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019

(Sage) a=1; b=2; c=1; (a*x^2 + b*sin(x)==c).find_root(0, 1, x) # G. C. Greubel, Feb 20 2019

CROSSREFS

Cf. A198866, A199080.

Sequence in context: A261253 A328334 A134977 * A232462 A266141 A266147

Adjacent sequences:  A199078 A199079 A199080 * A199082 A199083 A199084

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 02 2011

EXTENSIONS

Terms a(83) onward corrected by G. C. Greubel, Feb 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 18:03 EDT 2019. Contains 328102 sequences. (Running on oeis4.)