login
A199081
Decimal expansion of x > 0 satisfying x^2 + 2*sin(x) = 1.
3
4, 2, 3, 0, 2, 8, 1, 8, 1, 8, 8, 5, 1, 6, 0, 4, 2, 8, 8, 5, 1, 2, 9, 3, 3, 2, 4, 7, 3, 2, 6, 0, 7, 1, 8, 9, 5, 7, 2, 6, 9, 9, 8, 1, 0, 8, 4, 9, 1, 9, 9, 6, 0, 1, 7, 7, 7, 0, 2, 2, 5, 5, 3, 1, 6, 0, 9, 3, 4, 1, 1, 9, 8, 1, 1, 0, 6, 1, 3, 3, 0, 2, 6, 6, 3, 3, 0, 5, 4, 9, 3, 8, 0, 7, 7, 9, 9, 7, 2, 1, 8
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
negative: -1.7251712054289301271344240020632...
positive: 0.42302818188516042885129332473260...
MATHEMATICA
a = 1; b = 2; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110]
RealDigits[r] (* A199080 *)
r = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110]
RealDigits[r] (* A199081 *)
PROG
(PARI) a=1; b=2; c=1; solve(x=0, 1, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
(Sage) a=1; b=2; c=1; (a*x^2 + b*sin(x)==c).find_root(0, 1, x) # G. C. Greubel, Feb 20 2019
CROSSREFS
Sequence in context: A328334 A359060 A134977 * A338106 A232462 A266141
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
EXTENSIONS
Terms a(83) onward corrected by G. C. Greubel, Feb 20 2019
STATUS
approved