login
A199061
Decimal expansion of x<0 satisfying 2*x^2+sin(x)=1.
3
9, 5, 2, 6, 0, 9, 7, 8, 3, 7, 1, 1, 3, 0, 6, 7, 1, 3, 7, 4, 7, 3, 4, 8, 0, 7, 3, 7, 9, 2, 3, 6, 0, 7, 0, 5, 8, 6, 4, 4, 5, 2, 8, 6, 2, 8, 1, 4, 1, 4, 5, 1, 1, 1, 7, 3, 6, 0, 8, 6, 8, 2, 8, 4, 8, 5, 0, 5, 0, 2, 3, 7, 8, 5, 1, 3, 9, 0, 0, 6, 4, 0, 3, 1, 9, 7, 1, 4, 1, 4, 7, 4, 1, 2, 1, 7, 9, 7, 1
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -0.95260978371130671374734807379236070...
positive: 0.50711892841537397536307518244985199...
MATHEMATICA
a = 2; b = 1; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110]
RealDigits[r] (* A199061 *)
r = x /. FindRoot[f[x] == g[x], {x, .50, .51}, WorkingPrecision -> 110]
RealDigits[r] (* A199062 *)
CROSSREFS
Cf. A198866.
Sequence in context: A021109 A091132 A155165 * A346573 A075838 A094129
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
STATUS
approved