login
A199054
Decimal expansion of x<0 satisfying x^2+3*sin(x)=1.
3
1, 9, 4, 6, 8, 7, 7, 7, 4, 4, 6, 7, 0, 6, 8, 2, 9, 0, 8, 3, 3, 5, 4, 7, 3, 5, 4, 6, 6, 9, 7, 7, 2, 3, 8, 6, 1, 8, 8, 1, 5, 9, 2, 3, 4, 1, 2, 9, 4, 2, 8, 9, 9, 9, 1, 3, 7, 3, 1, 9, 5, 9, 9, 7, 7, 7, 1, 2, 3, 9, 0, 9, 2, 4, 6, 1, 9, 9, 5, 4, 9, 1, 6, 9, 6, 4, 6, 8, 6, 8, 3, 4, 1, 6, 6, 2, 2, 7, 7
OFFSET
1,2
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.946877744670682908335473546697723...
positive: 0.306755354137753007011651634733360...
MATHEMATICA
a = 1; b = 3; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2, -1.9}, WorkingPrecision -> 110]
RealDigits[r] (* A199054 *)
r = x /. FindRoot[f[x] == g[x], {x, .3, .31}, WorkingPrecision -> 110]
RealDigits[r] (* A199055 *)
CROSSREFS
Cf. A198866.
Sequence in context: A255013 A088539 A245084 * A131109 A371881 A267315
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
STATUS
approved