login
A199053
Decimal expansion of greatest x satisfying x^2+3*sin(x)=-1.
3
3, 9, 5, 8, 0, 9, 2, 3, 4, 4, 6, 9, 1, 3, 7, 8, 3, 7, 5, 8, 2, 5, 4, 7, 9, 9, 4, 3, 4, 0, 5, 2, 1, 8, 9, 2, 5, 2, 3, 5, 7, 9, 4, 8, 7, 5, 1, 2, 6, 5, 5, 7, 7, 0, 9, 3, 7, 9, 1, 5, 1, 6, 5, 3, 6, 3, 6, 5, 2, 8, 5, 8, 6, 7, 4, 8, 6, 5, 4, 0, 4, 5, 7, 4, 0, 3, 0, 5, 1, 1, 4, 2, 7, 0, 4, 0, 3, 1, 9
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -1.39840306895670428191362107010033086...
greatest: -0.3958092344691378375825479943405218925...
MATHEMATICA
a = 1; b = 3; c = -1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A199052 *)
r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
RealDigits[r] (* A199053 *)
CROSSREFS
Cf. A198866.
Sequence in context: A106586 A010633 A332564 * A200595 A197023 A096418
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
STATUS
approved