login
A199050
Decimal expansion of x<0 satisfying x^2+2*sin(x)=3.
3
2, 1, 5, 9, 4, 7, 8, 2, 9, 6, 9, 7, 4, 1, 1, 6, 0, 1, 8, 2, 6, 8, 9, 2, 3, 8, 7, 8, 5, 2, 4, 6, 8, 9, 0, 0, 9, 2, 9, 0, 4, 7, 3, 6, 2, 4, 8, 0, 8, 4, 3, 6, 6, 7, 3, 1, 0, 5, 5, 8, 9, 2, 8, 8, 0, 1, 0, 2, 8, 9, 1, 3, 3, 4, 9, 1, 8, 2, 7, 5, 7, 1, 4, 6, 3, 4, 1, 3, 1, 8, 3, 7, 0, 2, 2, 1, 5, 6, 4
OFFSET
1,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -2.159478296974116018268923878524689009...
positive: 1.1024409927824745029005123269585791156...
MATHEMATICA
a = 1; b = 2; c = 3;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199050 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[r](* A199051 *)
CROSSREFS
Cf. A198866.
Sequence in context: A026078 A349635 A176665 * A306539 A193629 A021467
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
STATUS
approved