|
|
A199023
|
|
(6*11^n - 1) / 5.
|
|
6
|
|
|
1, 13, 145, 1597, 17569, 193261, 2125873, 23384605, 257230657, 2829537229, 31124909521, 342374004733, 3766114052065, 41427254572717, 455699800299889, 5012697803298781, 55139675836286593, 606536434199152525
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Sum of n-th row of triangle of powers of 11: 1; 1 11 1; 1 11 121 11 1; 1 11 121 1331 121 11 1; ... - Philippe Deléham, Feb 23 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..900
Index entries for linear recurrences with constant coefficients, signature (12,-11).
|
|
FORMULA
|
a(n) = 11*a(n-1)+2.
a(n) = 12*a(n-1)-11*a(n-2), n>1.
G.f.: (1 + x)/(1 - 12*x + 11*x^2). - Vincenzo Librandi, Jan 04 2013
a(n) = Sum_{k=0..n} A112468(n,k)*12^k. - Philippe Deléham, Feb 23 2014
|
|
EXAMPLE
|
a(0) = 1;
a(1) = 1 + 11 + 1 = 13;
a(2) = 1 + 11 + 121 + 11 + 1 = 145;
a(3) = 1 + 11 + 121 + 1331 + 121 + 11 + 1 = 1597; etc. - Philippe Deléham, Feb 23 2014
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x)/(1 - 12*x + 11*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
|
|
PROG
|
(Magma) [(6*11^n-1)/5 : n in [0..20]]
(PARI) a(n)=(6*11^n-1)/5 \\ Charles R Greathouse IV, Oct 07 2015
|
|
CROSSREFS
|
Cf. A112468, A112739.
Sequence in context: A038492 A270579 A297223 * A152585 A014881 A048442
Adjacent sequences: A199020 A199021 A199022 * A199024 A199025 A199026
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Nov 02 2011
|
|
STATUS
|
approved
|
|
|
|