

A198995


Decimal expansion of x>0 satisfying 4*x^23*cos(x)=1.


2



6, 0, 5, 5, 2, 0, 1, 2, 3, 4, 6, 2, 2, 5, 3, 5, 2, 3, 9, 5, 8, 2, 9, 0, 7, 0, 5, 9, 6, 5, 7, 4, 3, 8, 9, 7, 5, 7, 3, 8, 4, 9, 3, 0, 3, 7, 7, 2, 4, 0, 4, 8, 2, 8, 2, 3, 8, 4, 3, 5, 8, 5, 6, 0, 8, 2, 1, 2, 9, 4, 8, 5, 0, 1, 1, 2, 2, 2, 9, 1, 5, 6, 2, 8, 0, 1, 5, 4, 5, 6, 7, 2, 6, 8, 4, 0, 6, 6, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.6055201234622535239582907059657438975738493037...


MATHEMATICA

a = 4; b = 3; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .60, .61}, WorkingPrecision > 110]
RealDigits[r] (* A198995 *)


CROSSREFS

Cf. A198755.
Sequence in context: A131329 A165954 A104288 * A168218 A153754 A096410
Adjacent sequences: A198992 A198993 A198994 * A198996 A198997 A198998


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 01 2011


STATUS

approved



