

A198942


Decimal expansion of x>0 satisfying 3*x^24*cos(x)=4.


2



1, 2, 9, 9, 9, 9, 9, 5, 9, 7, 9, 5, 7, 0, 4, 0, 5, 3, 4, 1, 8, 4, 7, 9, 3, 2, 7, 7, 0, 5, 9, 1, 7, 9, 1, 3, 9, 9, 9, 5, 9, 1, 1, 1, 1, 6, 4, 7, 4, 6, 2, 0, 5, 3, 2, 4, 6, 1, 4, 4, 2, 4, 5, 8, 5, 4, 4, 9, 6, 1, 0, 1, 7, 0, 1, 8, 0, 1, 7, 0, 0, 3, 6, 1, 9, 0, 2, 9, 6, 6, 7, 6, 6, 7, 3, 9, 1, 5, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Distance from x to 13/10 is < 1/10^6.
See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.2999995979570405341847932770591791399959...


MATHEMATICA

a = 3; b = 4; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.29, 1.3}, WorkingPrecision > 110]
RealDigits[r] (* A198942 *)


CROSSREFS

Cf. A198755.
Sequence in context: A003678 A201683 A197394 * A168333 A238412 A242064
Adjacent sequences: A198939 A198940 A198941 * A198943 A198944 A198945


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 01 2011


STATUS

approved



