login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198895 Triangle of coefficients arising in expansion of n-th derivative of tan(x) + sec(x). 0
1, 1, 1, 1, 2, 1, 1, 4, 5, 2, 1, 8, 18, 16, 5, 1, 16, 58, 88, 61, 16, 1, 32, 179, 416, 479, 272, 61, 1, 64, 543, 1824, 3111, 2880, 1385, 272, 1, 128, 1636, 7680, 18270, 24576, 19028, 7936, 1385, 1, 256, 4916, 31616, 101166, 185856, 206276 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
From Petros Hadjicostas, Aug 10 2019: (Start)
The recurrence about T(n, k) and the equation that connects T(n, k) to P(n, k) = A059427(n,k), which are given below, appear on p. 159 of the book by David and Barton (1962). The initial conditions, however, for their triangular array S^*_{N,t} are slightly different, but there is an agreement starting at t = k = 1. They do not provide tables for S^*_{N,t) (that matches the current array T(n, k) for N = n >= 0 and t = k >= 1).
Despite the slightly different initial conditions between T(n, k) and S^*_{N,t} (from p. 159 in the book), the recurrence given below can be proved very easily from the recurrence for the row polynomials R_n(x) given in Shi-Mei Ma (2011, 2012).
(End)
REFERENCES
Florence Nightingale David and D. E. Barton, Combinatorial Chance, Charles Griffin, 1962; see pp. 159-162.
LINKS
FORMULA
n-th row represents the coefficients of the polynomial R_n(x) defined by the recurrence: R_0(x) = 1, R_1(x) = 1 + x, and for n >= 1, R_{n+1}(x) = (1 + n*x^2)*R_n(x) + x*(1 - x^2)*R'_n(x).
From Petros Hadjicostas, Aug 10 2019: (Start)
T(n, k) = (k + 1) * T(n-1, k) + (n - k + 1) * T(n-1, k-2) for n >= 0 and 2 <= k <= n with initial conditions T(n, k=0) = 1 for n >= 0, T(n, k=1) = 2^(n-1) for n >= 1, and T(n, k) = 0 for n < 0 or n < k.
Setting x = 1 in the equation R_{n+1}(x) = (1 + n*x^2)*R_n(x) + x*(1 - x^2)*R'_n(x) (valid for n >= 1), we get R_{n+1}(1) = (n + 1)*R_n(1) for n >= 1. Since R_1(1) = 2, we have that R_n(1) = 2*n! for n >= 1. Since also R_0(1) = 1, we conclude that Sum_{k = 0..n} T(n,k) = R_n(1) = 2*n! - 0^n = A098558(n) for n >= 0.
Let P(n, k) = A059427(n,k) with P(n, k) = 0 for n <= 1 or n <= k. Then T(n, k) = (1/2)*P(n, k-1) + P(n, k) + (1/2) * P(n, k+1) for n >= 2 and 0 <= k <= n (but this is not true for n = 0 and n = 1).
(End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1
1 1
1 2 1
1 4 5 2
1 8 18 16 5
1 16 58 88 61 16
1 32 179 416 479 272 61
1 64 543 1824 3111 2880 1385 272
1 128 1636 7680 18270 24576 19028 7936 1385
1 256 4916 31616 101166 185856 206276 137216 50521 7936
...
CROSSREFS
Cf. A059427, A098558 (row sums), A000111 (diagonal and 1st subdiagonal), A000340 (column 3) A000431 (column 4), A000363 (column 5)
Sequence in context: A308905 A158471 A158472 * A355635 A118686 A355540
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 31 2011
EXTENSIONS
More terms from Max Alekseyev, Feb 17 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 03:16 EDT 2024. Contains 371782 sequences. (Running on oeis4.)