The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198887 E.g.f. satisfies: A(x) = exp(x*A(x)^2*A(-x)). 1
 1, 1, 3, 28, 269, 5056, 84247, 2400448, 57253849, 2191568896, 68151324491, 3278448139264, 125802549088933, 7291045162516480, 332950230966532831, 22581201334925049856, 1196122595530554458033, 92934371464549349982208, 5602230959364892208231443 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Limit n->infinity (a(n)/n!)^(1/n) = 1/r = 4.263493124332896881178517333221505445574016761952741537891924..., where r = 0.234549457648408586261093274213550311973... and s = 1.724680091765540585933497362883851976875... are roots of the system of equations s*sqrt((r*s*LambertW(2*r*s))/2) = log(s), s*sqrt((r*s*LambertW(2*r*s))/2)*(4 + 3*LambertW(2*r*s)) = 2*(1 + LambertW(2*r*s)). - Vaclav Kotesovec, Jul 16 2014 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..240 FORMULA E.g.f. satisfies x*y^2*(sqrt(LambertW(2*x*y)/(2*x*y)) = log(y), where y = A(x). - Vaclav Kotesovec, Jul 15 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 269*x^4/4! + 5056*x^5/5! +... Related series: A(x)^2*A(-x) = 1 + x + 7*x^2/2! + 40*x^3/3! + 709*x^4/4! + 8016*x^5/5! +... log(A(x)) = x + 2*x^2/2! + 21*x^3/3! + 160*x^4/4! + 3545*x^5/5! + 48096*x^6/6! +... PROG (PARI) {a(n)=local(A=1+x*O(x^n)); for(n=0, n, A=exp(x*A^2*subst(A, x, -x)+x*O(x^n))); n!*polcoeff(A, n)} CROSSREFS Cf. A143600. Sequence in context: A037588 A307885 A076723 * A026114 A181069 A239297 Adjacent sequences:  A198884 A198885 A198886 * A198888 A198889 A198890 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 19:29 EDT 2020. Contains 336298 sequences. (Running on oeis4.)