login
A198867
Decimal expansion of x > 0 satisfying x^2 + sin(x) = 1.
2
6, 3, 6, 7, 3, 2, 6, 5, 0, 8, 0, 5, 2, 8, 2, 0, 1, 0, 8, 8, 7, 9, 9, 0, 9, 0, 3, 8, 3, 8, 2, 8, 0, 0, 5, 8, 9, 9, 7, 8, 0, 5, 0, 7, 8, 8, 4, 1, 7, 9, 1, 6, 7, 3, 3, 8, 2, 8, 1, 8, 2, 6, 3, 1, 9, 5, 8, 0, 4, 4, 0, 2, 9, 0, 1, 2, 0, 2, 5, 9, 2, 6, 5, 1, 4, 5, 9, 4, 7, 3, 1, 1, 8, 0, 7, 4, 5, 9, 8
OFFSET
0,1
COMMENTS
See A198866 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
negative: -1.40962400400259624923559397058949354...
positive: 0.63673265080528201088799090383828005...
MATHEMATICA
a = 1; b = 1; c = 1;
f[x_] := a*x^2 + b*Sin[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.41, -1.40}, WorkingPrecision -> 110]
RealDigits[r] (* A198866 *)
r = x /. FindRoot[f[x] == g[x], {x, .63, .64}, WorkingPrecision -> 110]
RealDigits[r] (* A198867 *)
PROG
(PARI) a=1; b=1; c=1; solve(x=0, 1, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
(Sage) a=1; b=1; c=1; (a*x^2 + b*sin(x)==c).find_root(0, 1, x) # G. C. Greubel, Feb 20 2019
CROSSREFS
Cf. A198866.
Sequence in context: A193025 A021615 A198937 * A078888 A293560 A021161
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 02 2011
STATUS
approved