This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198860 E.g.f. satisfies: A(x) = 1/(1 - log(1 + x*A(x))). 0
 1, 1, 3, 17, 144, 1634, 23312, 401274, 8096680, 187472136, 4900535832, 142766286552, 4587190461840, 161161214978880, 6146415080939520, 252902928346825104, 11167368115492742400, 526752556713346955520, 26433830208985721222400, 1406218428780691953635712 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to e.g.f. G(x) of A052802, which satisfies: G(x) = 1/(1 + log(1 - x*G(x))). LINKS FORMULA E.g.f. satisfies: A(x*(1 - log(1+x))) = 1/(1 - log(1+x)). E.g.f.: A(x) = (1/x)*Series_Reversion[x - x*log(1+x)]. a(n) = n!*[x^n] 1/(1 - log(1+x))^(n+1)/(n+1). a(n) = Sum_{k=0..n} (binomial(n+k,n) * Sum_{j=0..k} (-1)^(j)*binomial(k,j) * (Sum_{i=0..j} (-1)^i*i!*binomial(j,i)*Stirling1(n,i)))/(n+1). - Vladimir Kruchinin, Feb 04 2012 a(n) ~ n^(n-1) / ((1-c)*sqrt(1+c) * exp(n) * (1/c+c-2)^n), where c = LambertW(1). - Vaclav Kotesovec, Dec 28 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 144*x^4/4! + 1634*x^5/5! + ... where log(1 + x*A(x)) equals 1 - 1/A(x) = x + x^2/2! + 5*x^3/3! + 38*x^4/4! + 404*x^5/5! + 5514*x^6/6! + ... MATHEMATICA a[n_] := Sum[ Binomial[n+k, n]*Sum[ (-1)^(j)*Binomial[k, j]*Sum[ (-1)^i*i!*Binomial[j, i]*StirlingS1[n, i], {i, 0, j}], {j, 0, k}], {k, 0, n}]/(n+1); Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jun 24 2013, after Vladimir Kruchinin *) CoefficientList[1/x*InverseSeries[Series[x-x*Log[1+x], {x, 0, 20}], x], x] * Range[0, 19]! (* Vaclav Kotesovec, Dec 28 2013 *) PROG (PARI) {a(n)=n!*polcoeff((1/x)*serreverse(x-x*log(1+x +x*O(x^n))), n)} (PARI) {a(n)=n!*polcoeff(1/(1-log(1+x +x*O(x^n)))^(n+1)/(n+1), n)} (PARI) /* by Vladimir Kruchinin's formula: */ {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {a(n)=sum(k=0, n, binomial(n+k, n)*sum(j=0, k, (-1)^(j)*binomial(k, j)*sum(i=0, j, (-1)^i*i!*binomial(j, i)*Stirling1(n, i))))/(n+1)} \\ Paul D. Hanna (Maxima) a(n):=sum(binomial(n+k, n)*sum((-1)^(j)*binomial(k, j)*sum((-1)^i*i!*binomial(j, i)* stirling1(n, i), i, 0, j), j, 0, k), k, 0, n))/(n+1); // Vladimir Kruchinin, Feb 04 2012 CROSSREFS Cf. A030178, A052802. Sequence in context: A087885 A178685 A268254 * A298691 A051442 A162650 Adjacent sequences:  A198857 A198858 A198859 * A198861 A198862 A198863 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)