login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198785 G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n) / A(-x^n) * x^n/n ). 0
1, 1, 3, 5, 14, 28, 77, 173, 485, 1165, 3335, 8341, 24331, 62455, 184783, 483127, 1445429, 3830911, 11562247, 30969809, 94134108, 254285698, 777410651, 2114690863, 6496549393, 17774924057, 54831676621, 150766702399, 466729836290, 1288810006264, 4002059363580 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..30.

FORMULA

Euler transform of the coefficients in A(x)/A(-x), where A(x) is the g.f. of this sequence.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 14*x^4 + 28*x^5 + 77*x^6 + 173*x^7 +...

where

log(A(x)) = A(x)/A(-x)*x + A(x^2)/A(-x^2)*x^2/2 + A(x^3)/A(-x^3)*x^3/3 +...

more explicitly,

log(A(x)) = x + 5*x^2/2 + 7*x^3/3 + 29*x^4/4 + 51*x^5/5 + 191*x^6/6 + 407*x^7/7 + 1485*x^8/8 + 3409*x^9/9 + 12315*x^10/10 +...

This sequence equals the Euler transform of coefficients in A(x)/A(-x):

[1,2,2,6,10,30,58,182,378,1226,2658,8798,19634,65990,150338,511054,...];

A(x) = 1/((1-x) *(1-x^2)^2 *(1-x^3)^2 *(1-x^4)^6 *(1-x^5)^10 *(1-x^6)^30 *(1-x^7)^58 *(1-x^8)^182 *(1-x^9)^378 *...).

PROG

(PARI) {a(n)=local(A=1+x, B); for(i=1, n, B=(A/subst(A, x, -x)); A=exp(sum(m=1, n, subst(B, x, x^m+x*O(x^n))*x^m/m))); polcoeff(A, n)}

CROSSREFS

Sequence in context: A145974 A147544 A192478 * A222380 A271867 A052974

Adjacent sequences:  A198782 A198783 A198784 * A198786 A198787 A198788

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 15:01 EST 2016. Contains 278678 sequences.