login
Numbers having exactly four representations by the quadratic form x^2+xy+y^2 with 0<=x<=y.
8

%I #22 May 16 2022 16:43:10

%S 1729,2821,3367,3913,4123,4459,4921,5187,5551,5719,6097,6517,6643,

%T 6916,7189,7657,8029,8113,8463,8827,8911,9139,9331,9373,9709,9919,

%U 10101,10507,10621,10633,11137,11284,11557,11739,12369,12649,12691,12901,13237,13377

%N Numbers having exactly four representations by the quadratic form x^2+xy+y^2 with 0<=x<=y.

%C A088534(a(n)) = 4; subsequence of A118886, see also A003136.

%H Chai Wah Wu, <a href="/A198775/b198775.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..250 from Reinhard Zumkeller).

%e a(1) = 1729 = 3^2+3*40+40^2 = 8^2+8*37+37^2 = 15^2+15*32+32^2 = 23^2+23*25+25^2, A088534(1729) = 4;

%e a(10) = 5719 = 5^2+5*73+73^2 = 15^2+15*67+67^2 = 18^2+18*65+65^2 = 37^2+37*50+50^2, A088534(5719) = 4;

%e a(100) = 23779 = 17^2+17*145+145^2 = 30^2+30*137+137^2 = 50^2+50*123+123^2 = 85^2+85*93+93^2, A088534(23779) = 4.

%t amax = 20000; xmax = Sqrt[amax] // Ceiling; Clear[f]; f[_] = 0; Do[q = x^2 + x y + y^2; f[q] = f[q] + 1, {x, 0, xmax}, {y, x, xmax}];

%t A198775 = Select[Range[0, 3 xmax^2], # <= amax && f[#] == 4&] (* _Jean-François Alcover_, Jun 21 2018 *)

%o (Haskell)

%o a198775 n = a198775_list !! (n-1)

%o a198775_list = filter ((== 4) . a088534) a003136_list

%o (Python)

%o from itertools import count, islice

%o def A198775_gen(startvalue=1): # generator of terms >= startvalue

%o for n in count(max(startvalue,1)):

%o c = 0

%o for y in range(n+1):

%o if c > 4 or y**2 > n:

%o break

%o for x in range(y+1):

%o z = x*(x+y)+y**2

%o if z > n:

%o break

%o elif z == n:

%o c += 1

%o if c > 4:

%o break

%o if c == 4:

%o yield n

%o A198775_list = list(islice(A198775_gen(),10)) # _Chai Wah Wu_, May 16 2022

%Y Cf. A198772, A198773, A198774.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Oct 30 2011