

A198607


Decimal expansion of x < 0 satisfying 3*x^2 + 4*x = 2*sin(x).


2



7, 2, 3, 2, 9, 3, 0, 7, 1, 3, 3, 5, 8, 5, 3, 3, 3, 5, 5, 3, 5, 0, 3, 6, 4, 9, 3, 2, 0, 9, 7, 8, 9, 7, 3, 9, 2, 7, 4, 5, 7, 0, 7, 8, 4, 4, 6, 8, 6, 3, 6, 1, 1, 2, 1, 8, 6, 2, 4, 7, 0, 9, 5, 8, 5, 8, 9, 2, 7, 1, 6, 0, 6, 5, 6, 3, 9, 9, 5, 8, 3, 0, 5, 0, 9, 6, 3, 5, 9, 8, 5, 3, 8, 2, 7, 8, 0, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A198414 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000


EXAMPLE

x = 0.723293071335853335535036493209789739274570...


MATHEMATICA

a = 3; b = 4; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, 1, .1}]
r = x /. FindRoot[f[x] == g[x], {x, .73, .72}, WorkingPrecision > 110]
RealDigits[r] (* A198607 *)


PROG

(PARI) solve(x=1, 0.5, 3*x^2 + 4*x  2*sin(x)) \\ Iain Fox, Dec 26 2017


CROSSREFS

Cf. A198414.
Sequence in context: A078087 A176976 A291361 * A021857 A222224 A163333
Adjacent sequences: A198604 A198605 A198606 * A198608 A198609 A198610


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 28 2011


STATUS

approved



