login
Second term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384, A198385, A198386).
8

%I #40 Jan 31 2023 08:32:29

%S 25,169,289,625,841,1369,1681,3721,2809,4225,4225,7225,5329,7225,7921,

%T 10201,12769,9409,11881,15625,21025,21025,22201,18769,32761,24649,

%U 29929,38809,34225,28561,48841,34225,37249,42025,52441,66049,70225,42025,48841,54289

%N Second term of a triple of squares in arithmetic progression, which is not a multiple of another triple in (A198384, A198385, A198386).

%H Ray Chandler, <a href="/A198436/b198436.txt">Table of n, a(n) for n = 1..10000</a>

%H Keith Conrad, <a href="http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/3squarearithprog.pdf">Arithmetic progressions of three squares</a>

%H Reinhard Zumkeller, <a href="/A198435/a198435.txt">Table of initial values</a>

%F a(n) = A198440(n)^2 = A198385(A198409(n)).

%F a(n) - A198435(n) = A198437(n) - a(n) = A198438(n).

%t wmax = 1000;

%t triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u^2, v^2, w^2}]]]]][[2]];

%t tt = Flatten[DeleteCases[triples /@ Range[wmax], {}], 2];

%t DeleteCases[tt, t_List /; GCD @@ t>1 && MemberQ[tt, t/GCD @@ t]][[All, 2]] (* _Jean-François Alcover_, Oct 20 2021 *)

%o (Haskell)

%o a198436 n = a198436_list !! (n-1)

%o a198436_list = map a198385 a198409_list

%Y Cf. A198385, A198409, A198435, A198437, A198438, A198440.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Oct 25 2011