login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198412 a(n) = (3^(6*n) - 2^(6*n))/35. 1
0, 19, 15067, 11061667, 8068935979, 5882573095795, 4288416187929211, 3126256706670452803, 2279041222725643804363, 1661421056715018890883091, 1211175950687522343133931035, 882947268073109296732165817059, 643668558426698629867350806558827 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

3^6 = (3^3)^2 == (-8)^2 (mod 35) = 64 and 2^6 = 64.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Index entries for linear recurrences with constant coefficients, signature (793,-46656).

FORMULA

a(n) = (3^(6*n) - 2^(6*n))/35.

G.f.: 19*x / ( (729*x-1)*(64*x-1) ). - R. J. Mathar, Oct 25 2011

EXAMPLE

a(1) = (3^(6*1) - 2^(6*1))/35 = 665/35 = 19.

MAPLE

for n from 0 to 30 do:

x:= (3^(6*n)- 2^(6*n))/35:  printf(`%d, `, x):od:

MATHEMATICA

LinearRecurrence[{793, -46656}, {0, 19}, 50] (* Vincenzo Librandi, Nov 25 2011 *)

Table[(3^(6n)-2^(6n))/35, {n, 0, 20}] (* Harvey P. Dale, Aug 14 2019 *)

PROG

(MAGMA) [(3^(6*n)- 2^(6*n))/35: n in [0..15]]; // Vincenzo Librandi, Nov 25 2011

(PARI) a(n)=(3^(6*n)-2^(6*n))/35 \\ Charles R Greathouse IV, Jul 06 2017

CROSSREFS

Sequence in context: A174306 A270069 A186165 * A110392 A107100 A233233

Adjacent sequences:  A198409 A198410 A198411 * A198413 A198414 A198415

KEYWORD

nonn,easy,less

AUTHOR

Michel Lagneau, Oct 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 04:39 EDT 2019. Contains 327187 sequences. (Running on oeis4.)