OFFSET
0,2
COMMENTS
3^6 = (3^3)^2 == (-8)^2 (mod 35) = 64 and 2^6 = 64.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Index entries for linear recurrences with constant coefficients, signature (793,-46656).
FORMULA
a(n) = (3^(6*n) - 2^(6*n))/35.
G.f.: 19*x / ( (729*x-1)*(64*x-1) ). - R. J. Mathar, Oct 25 2011
EXAMPLE
a(1) = (3^(6*1) - 2^(6*1))/35 = 665/35 = 19.
MAPLE
for n from 0 to 30 do:
x:= (3^(6*n)- 2^(6*n))/35: printf(`%d, `, x):od:
MATHEMATICA
LinearRecurrence[{793, -46656}, {0, 19}, 50] (* Vincenzo Librandi, Nov 25 2011 *)
Table[(3^(6n)-2^(6n))/35, {n, 0, 20}] (* Harvey P. Dale, Aug 14 2019 *)
PROG
(Magma) [(3^(6*n)- 2^(6*n))/35: n in [0..15]]; // Vincenzo Librandi, Nov 25 2011
(PARI) a(n)=(3^(6*n)-2^(6*n))/35 \\ Charles R Greathouse IV, Jul 06 2017
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Michel Lagneau, Oct 24 2011
STATUS
approved