login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198410 ((3^(n-1) + 1)^3 -1)/3^n. 16
7, 37, 271, 2269, 19927, 177877, 1596511, 14355469, 129159847, 1162320517, 10460530351, 94143710269, 847290203767, 7625602267957, 68630391713791, 617673439330669, 5559060695695687, 50031545486420197, 450283907053258831, 4052555156505760669, 36472996387631139607 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

This sequence is generalizable :

Proposition: p^n divide (p^(n-1) + 1)^ p - 1.

Proof: Let a and p be two integers such that p>=2, and k = gcd(a, p). Then ak divides (a + 1)^p - 1 because (a+1)^p - 1 = [a^p + binomial(p,1)*a^(p-1) + … + binomial(p,p-2)*a^2] + pa == binomial(p,1)*n^(n-1) == 0 (mod p^n) with a = p^(n-1) and k = p.

a(n) is the least k such that k*3^n+1 is a cube. Thus, the cube is given by (3^(n-1)+1)^3. - Derek Orr, Mar 23 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..200

Index entries for linear recurrences with constant coefficients, signature (13,-39,27).

FORMULA

G.f.: -x^2*(7-54*x+63*x^2) / ( (x-1)*(3*x-1)*(9*x-1) ). - R. J. Mathar, Oct 25 2011

a(n) = 13*a(n-1)-39*a(n-2)+27*a(n-3) for n>2. - Vincenzo Librandi, Mar 25 2014

EXAMPLE

a(2) = ((3 + 1)^3 - 1)/3^2 = 63/9 = 7.

MAPLE

A198410 := proc(n)

        (3^(n-1)+1)^3 ;

        (%-1)/3^n ;

end proc:

seq(A198410(n), n=2..20) ; # R. J. Mathar, Oct 25 2011

MATHEMATICA

Table[((3^(n - 1) + 1)^3 - 1)/3^n, {n, 2, 20}] (* Wesley Ivan Hurt, Mar 24 2014 *)

CoefficientList[Series[(7 - 54 x + 63 x^2)/((1 - x) (3 x - 1) (9 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 25 2014 *)

LinearRecurrence[{13, -39, 27}, {7, 37, 271}, 30] (* Harvey P. Dale, Mar 04 2015 *)

PROG

(MAGMA) I:=[7, 37, 271]; [n le 3 select I[n] else 13*Self(n-1)-39*Self(n-2)+27*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 25 2014

(PARI) a(n)=9^n/27+3^n/3+1 \\ Charles R Greathouse IV, Jun 11 2015

CROSSREFS

Cf. A060073.

Sequence in context: A159597 A217723 A100309 * A199192 A089677 A075996

Adjacent sequences:  A198407 A198408 A198409 * A198411 A198412 A198413

KEYWORD

nonn,easy

AUTHOR

Michel Lagneau, Oct 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 09:03 EST 2016. Contains 278906 sequences.