login
A198405
Number of 2n X 2 0..4 arrays with values 0..4 introduced in row major order and each element equal to exactly one horizontal and vertical neighbor.
2
2, 17, 377, 11473, 375273, 12456897, 414711897, 13814539697, 460231956937, 15333001667233, 510833776539193, 17018936996199057, 567002973887727017, 18890274083549781377, 629348476275500726297, 20967377362990867086193
OFFSET
1,1
COMMENTS
Column 1 of A198408.
LINKS
FORMULA
Empirical: a(n) = 51*a(n-1) - 691*a(n-2) + 3601*a(n-3) - 7056*a(n-4) + 4096*a(n-5).
Conjectures from Colin Barker, Mar 02 2018: (Start)
G.f.: x*(2 - 85*x + 892*x^2 - 3209*x^3 + 3552*x^4) / ((1 - x)*(1 - 9*x + 16*x^2)*(1 - 41*x + 256*x^2)).
a(n) = (2^(-8-n)*(-1752*(9-sqrt(17))^n*(-51+5*sqrt(17)) + 1752*(9+sqrt(17))^n*(51+5*sqrt(17)) + 17*(73*2^(9+n) + (365-17*sqrt(73))*(41-3*sqrt(73))^n + (41+3*sqrt(73))^n*(365+17*sqrt(73))))) / 3723.
(End)
EXAMPLE
Some solutions for n=3:
..0..0....0..0....0..1....0..0....0..0....0..0....0..0....0..1....0..0....0..1
..1..2....1..2....0..1....1..1....1..1....1..2....1..1....0..1....1..1....0..1
..1..2....1..2....2..3....2..3....2..3....1..2....2..2....2..2....0..0....2..3
..3..3....0..0....2..3....2..3....2..3....2..0....3..3....0..0....2..2....2..3
..4..0....3..2....1..0....3..0....4..4....2..0....4..4....1..3....0..0....4..4
..4..0....3..2....1..0....3..0....2..2....1..1....2..2....1..3....1..1....3..3
CROSSREFS
Cf. A198408.
Sequence in context: A243509 A128159 A319591 * A202972 A085617 A152557
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 24 2011
STATUS
approved