

A198390


Square root of third term of a triple of squares in arithmetic progression.


7



7, 14, 17, 21, 23, 28, 31, 34, 35, 41, 42, 46, 47, 49, 49, 51, 56, 62, 63, 68, 69, 70, 71, 73, 77, 79, 82, 84, 85, 89, 91, 92, 93, 94, 97, 98, 98, 102, 103, 105, 112, 113, 115, 119, 119, 119, 119, 123, 124, 126, 127, 133, 136, 137, 138, 140, 141, 142, 146
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A198386(n) = a(n)^2.
A198441(n) = a(A198409(n)).
There is a connection to the leg sums of Pythagorean triangles.
See a comment on the primitive case under A198439, which applies mutatis mutandis.  Wolfdieter Lang, May 23 2013
Are these just the positive multiples of A001132?  Charles R Greathouse IV, May 28 2013


LINKS

Table of n, a(n) for n=1..59.
Reinhard Zumkeller, Table of initial values
Keith Conrad, Arithmetic progressions of three squares


EXAMPLE

Connection to leg sums of Pythagorean triangles: a(2) = 14 because (in the notation of the Zumkeller link) (u,v,w)= (2,10,14) = 2*(1,5,7), and this corresponds to the nonprimitive Pythagorean triangle 2*(x=(71)/1,y=(1+7)/2,z=5) = 2*(3,4,5) with leg sum 2*(3+4) = 14.  Wolfdieter Lang, May 23 2013


PROG

(Haskell)
a198390 n = a198390_list !! (n1)
a198390_list = map (\(_, _, x) > x) ts where
ts = [(u, v, w)  w < [1..], v < [1..w1], u < [1..v1],
w^2  v^2 == v^2  u^2]
(PARI) is(n)=my(t=n^2); forstep(i=2n%2, n2, 2, if(issquare((t+i^2)/2), return(1))); 0 \\ Charles R Greathouse IV, May 28 2013


CROSSREFS

Sequence in context: A269173 A167197 A100599 * A118905 A254064 A257224
Adjacent sequences: A198387 A198388 A198389 * A198391 A198392 A198393


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Oct 24 2011


STATUS

approved



